
FLOW PARAMETERS IN THE INTERACTION OF TWO GAS JETS 
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On the basis of experimental data, a procedure is proposed for approximate cal- 
culation of the flow parameters at the symmetry axis in the interaction of two 
axisymmetric supersonic underexpanded jets of ideal gas. 

The results of the present work are a continuation of the investigation of internal 
shock-wave structure and the distribution of the gas-dynamic parameters in parallel jets 
in [i], where experimental and theoretical data on the free four-nozzle gas jets were pre- 
sented. 

Additional experiments are undertaken on air jets with the following parameters: Mach 
number at the nozzle aperture M a = 1.0-3.0;_degree of underexpansion n = pa/Pex = 1.2-34.8; 
5a = 5-20; distance between nozzle centers ~ = 1.2-2.0. In the course of the experiments, 
shadow photographs of single-nozzle and two-nozzle jets are obtained, as well as images of 
the gas outflow in the plane of jet interaction by applying organic glass in the given plane 
before blowthrough in that plane, and the total and static pressure in the given flow re- 
gions are measured. 

The distribution of the relative pressure value P0" measured by a Pitot tube (here and 
below, all linear dimensions are referred to the radius of the nozzle output cross section) 
along the symmetry axis of the two-nozzle jet is shown in Fig. i for three values of the 
relative stagnation pressure in the output cross section of the nozzle. 

At some distance from the nozzle aperture, the distribution of these pressures does not 
depend on N = P0/Pex, i.e., on the degree of underexpansion. Below, this is called the sec- 
tion of self-similar flow. The preceding section, where the influence of the degree of un- 
derexpansion of the interacting jets is significant, is called the section of initial flow 
formation. 

The relative pressure values measured by a Pitot tube in a single jet which is equivalent 
in flow rate to the two-nozzle jet is also shown in Fig. i. On the section of self-similar 
flow, the relative pressure values measured by the Pitot tube in the two-nozzle jet and the 
equivalent single jet are practically the same. This allows the distribution of Mach numbers 
at the axis of the two-nozzle jet to be determined. 

The relative pressure in an aggregate jet is written as follows 

P~ _ p~ p~ _ n o ~ , , ~  (i) 
Po Po Po Po 

where Po' is the stagnation pressure at the axis of the two-nozzle jet. 

Since P0"/P0' and P0"equiv/P0, the pressure ratio behind and in front of the discontir 
nuity, are functions of the Mach number in the incoming flow P0"/P0' = f(M), P0"equiv/P0 = 
f(M'), it follows from Eq. (i) that 

f(~)  = P? f(M'), (2) 
Po 

where M and M' are the Mach numbers at the axis of the two-nozzle jet and equivalent single 
j e t .  

The form of f is as follows [2] 

v___ 
f=[ ('q- I)M~ ]'-I( 2?. M2___ 

! 

y I> ,~--I 
- -  (3) 

? + 1  
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Fig. i. Experimental and theoretical 
data on the total pressure at the 
axis of a two-nozzle jet (M a = 2.0; 
~a = 5~ ~ = 1.4; s = 1.5); i) cal- 
culation; 2) experiment; 3) equiva- 
lent single jet. 

Equation (2) gives the distribution of Mach numbers at the axis of the two-nozzle jet 
in the self-similar section of the flow if the stagnation pressure P0' at the axis of this 
jet, determined by the conditions of jet interaction, is known. 

As shown by experimental data, an engineering method of calculating single-nozzle jets 
may be used in calculating a series of geometric and gas-dynamic characteristics in two- 
nozzle jets; therefore, following the results of [2, 3], the basic dependences required are 
given below. 

The Mach jnumber Mex at the jet boundary and the angle of slope Oex of the boundary at 
the initial point A are calculated from the formulas 

M - - (  2 v-I �9 ex- ~ - - l  ( N T -  1), (4) 

o ~  o~ + ,  (~ .~- ,  (~io), (5) 
where 

(M) : l / v  + 1 a~ctg 1//__7__7 ( , ~  - 1 ~ _ V3~---~- ] l) - -  arctg V.M z - -  1. 

The Mach number M B at point B and the abscissa x B of this point are determined by the rela- 
tions for a supersonic source 

T (M.B) = T (Ma) -~- 2(~a, ( 6 ) 

where 

1 . / q  (MB) 
XB s i n %  V q ( M ~ )  ctg. O~, ( 7 )  

,~+1 
i ,__1 ] 2(,--i) 

The distribution of the Mach numbers over the axis in region 3 may be determined from 
the hypothetical-source formula [3, 4] 

where 

, §  1) 
The Mach number M 3 preceding the central discontinuity is determined from the condition 

that the critical pressure beyond this discontinuity is equal to the external pressure 

1 v 

~ + - - - - ~  * v +  1 ~ +  " ( 9 )  
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Fig. 2. Wave structure of flow and calculation of 
Mach numbers along the axis of the two-nozzle jet: 
a) single-nozzle underexpanded jet; b) two-nozzle 
jet in axial plane; c) calculation of Mach-number 
distribution along the axis of a two-nozzle jet_ 
with N = 46 (i), 61 (2), and 76 (3); M a = 2.0; s = 
1.5; ~a = 5~ 7 = 1.4. 

Knowing the distribution of Mach numbers along the axis and the Mach number preceding 
the central discontinuity, its position may be determined. Good results are obtained, for 
example, using the Lewis-Carlson empirical formula x c = 1.38Ma/(-~, where 

i s  t h e  d e g r e e  o f  u n d e r e x p a n s i o n  o f  t h e  j e t .  

The t r i p l e  p o i n t  o f  t h e  Mach c o n f i g u r a t i o n  o f  d i s c o n t i n u i t i e s  i s  c a l c u l a t e d  f rom t h e  con-  
d i t i o n  t h a t  t h e  s t a t i c  p r e s s u r e s  and a n g l e s  o f  s l o p e  o f  t h e  v e l o c i t y  v e c t o r s  a r e  e q u a l  a t  t h e  
c o n t a c t  d i s c o n t i n u i t y  s e p a r a t i n g  r e g i o n s  5 and 6 ( F i g .  2 a ) .  As a r e s u l t ,  t h e  f o l l o w i n g  s y s -  
tem o f  e q u a t i o n s  i s  o b t a i n e d  f o r  d e t e r m i n i n g  6 = P4/P3 as  a f u n c t i o n  o f  M3 

8 - - 1  V I ( 1  -k- ~) M~ 8~ - -  1 1 /  (1 Jr ~) M] 
6 + 8  1 = ? M ] §  6~+ 

~ + 1 '  %-\V+1 V+ ' 

8 (a8+  1) 

, 

(lO) 

Hence determining 6, the pressure P4 at branching of the discontinuities is found 
? 

( P ~ - - 6 N  1 - k Y - - l M ~  
Pex 2 

The e q u a t i o n s  o f  gas  m o t i o n  in  t h e  r e g i o n  o f  t h e  j e t  b o u n d a r y  may be w r i t t e n  a p p r o x i -  
m a t e l y  in the form [3] 

dy sin O 
y 

dO v~y 

dx cos @ 

dO v2y 
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Fig. 3. Shadow recordings of two-nozzle jet in 
two projections (M a = 2.0; N = 46; ~ = 1.5; Oa = 
5~ 

Integrating these equations, the equation of the jet boundary is obtained in parametric 
form 

I o cosOdO (11) 
,~ j g2(cosO--cosOe~+v~ 

ex 

The parameter v was defined in [2] by the formula 

v~ = __ 2 ( 1 - -  p J p . . ~ _  

n(i + vMb2h 
Making use of the above results for a single-nozzle underexpanded jet, the interaction 

of two jets at the axis at point 0 is now considered (Fig. 2b). In the coordinate system 
DXY, the equations of the single-jet boundary are as follows 

l r2 
U- 2 V -fi -<c~176 

I 0 x = - - - -  i' c o s O d O _ _  
v ~! V2 (cos O -- cos %~ + v~ 

ex 

Letting y = s the angle of slope of the boundary at the point of interaction (or the 
angle of rotation of the flow at the discontinuity which is formed at the point of interac- 
tion) is found from these equations, together with the abscissa of this point 

0 
1 ex COS OdO 

X o ~  - -  ! 
o 

(i2) 

If the angle @o is less than critical, i.e., the discontinuity is additional, the angle 
of slope of the discontinuity o 0 is determined [5] 

%=arcctg[2]/ccos( arcc~ ----31 (l+__2__?+lM2)tgOo] , e x  (13) 
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Fig. 4. Calculating the conditions 
of tangency of the supersonic gas 
jet with the plate: M a = 2.0; 7 = 
1.4; %a = 5~ ~ = 1.25 (i), 1.5 (2), 
1.75 (3), 2.0 (4). 

where 

C z -- ) tg Oo] ] 2 -7-(M 1), 

d = - ] - + ( 1 - + -  ?--12 ~ ' ~  ?+14 M~x) tgO~ 

Then, from the slanting-discontinuity formulas, 
behind its front are calculated 

the Mach number and stagnationpressure 

M~ = 2 + (y- I) M 2 2N~cos ~ o% ex + , (14) 
2?M~sinZ%-- ~, + 1 (? - -  1) M~xSinZ% + 2 

- -  = 1 + (M~in ~ % -  1) Po (?-- 1) 2-.-2 ' _Me~m 0%-]- 2 Y--I- 1 (15) 

The distribution of Mach numbers over the azis of the two-nozzle jet on the self-similar 
flow section is determined from the hypothetical-source formula in Eq. (4) for an equivalent 
single jet, taking account of the loss of stagnation pressure at the discontinuity 

[ )] ,0 x = V 2 -  XB+-I/~--" q(M;) 1 , f ( M ) =  f(M'). 
q(M') pi 

In the section of initial flow formation, the distribution of Math numbers is approxi- 
mated by a segment of a straight line passing through the point (x0, M0), and by the tangent 
to the curve M(x) in the self-similar section. 

The results of calculating the Mach numbers at the axis of a two-nozzle jet are shown 
in Fig. 2c for three values of N. 

Using the theoretical values of the Mach number and stagnation pressure at the jet axis, 
the stagnation pressure behind a straight pressure discontinuity is determined 

? I 

Po Po 2 + ( y - - 1 ) M  2 ? +  1 ~-6 1 
Theoretical values of the stagnation pressure behind a straight discontinuity (continu- 

ous curves) are compared in Fig. 1 with the pressures measured by a Pitot tube. The agree- 
ment of the results may be regarded as completely satisfactory. 

Having a formula for determining the Mach numbers along the axis of a two-nozzle jet, 
other gas -dynamic characteristics of the flow in the given region may also be calculated. 
This entails knowing the stagnation parameters P0, P0 behind a sloping pressure discontin- 
uity at point 0 (Fig. 2b). 
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where o is the angle of slope of shock wave ON to the direction of the boundary streamline 
at point 0. 

In deriving the formula for the temperature distribution T i = f(x), the energy transfor- 
mation at discontinuities must be taken into account. Since the total energy of the flow is 
unchanged on passing through the discontinuity, the following expressions are obtained for 
the enthalpy h0 = cpT0 = ~/(Y - i) P0/P0 and the temperature of the stagnation flow: h01 = 
h02 = h0, T01 = T02 = T O . 

Now using the formulas for the isentropic flow 

pi = po2 ( l , - -  12  Mi2 ) 1-, , 

1 ( )'-, Pi=9o~ 1+ ~-- 1 M~ 
2 

Ti= To ( l q- ?--12 M~ ) -~' 

in which subscript i denotes the parameter values at an arbitrary point on the axis 0X be- 
hind point D. The position of point D is determined by combined solution of the equations 
of the boundary of the single jet and the axis 0X. 

Shadow recordings of a two-nozzle jet in two projections are shown in Fig. 3. The ini- 
tial outflow parameters correspond to the conditions investigated here. The photographs 
give additional information on the shock-wave structure, the boundaries of the jet in the 
characteristic cross sections, and the dimensions of the regions in which the gas-dynamic 
parameters were determined above. 

The results obtained on the gas -dynamic parameters in the symmetry plane of parallel 
two-nozzle jets may also be used in calculating nonparallel gas jets, whose axes either in- 
tersect or diverge. It is evident that, in the latter case, interaction of the jets demands 
a larger initial total pressure P0 than in the case of parallel or converging jets. 

It is of interest to determine the influence of the angle of divergence of the jets on 
the gas dynamics of their interaction. To this end, as shown in Fig. 4, the nozzle is fixed 
with its center at point 0, and at a distance h = 0B a plane which may be rotated relative 
to point B is established. The angle ~ with the axis 0X may be regarded as positive in 
counterclockwise rotation and negative in clockwise rotation. For each angle ~, there is a 
definite value of the degree of underexpansion of the jet at which the jet boundary touches 
the plate. Knowing these values of the underexpansion, the required initial interaction 
parameters of two-nozzle jets may be established (the angle ~ is positive for converging 
jets and negative for diverging jets). It is clear that, in investigating two-nozzle jets, 
the lines BC l or BC 2 are their axes. 

The results of calculating the initial stage of interaction of two-nozzle jets are shown 
in Fig. 4. Four values of h - a characteristic similar to the nozzle dispersion ~ consi- 
dered above - are chosen in the course of the calculations. 

The calculations show that, for a diverging jet (~ < 0), considerable underexpansion is 
required if interaction of the jet at the axis is to occur. 

Note that, when n > n,, reverse gas flows in the direction of the nozzles begin to form; 
the investigation of such flows is a separate problem, of great practical importance. 

NOTATION 

M, Mach number; n, degree of underexpansion of jet; p, p, T, pressure, density, tempera- 
ture; ~, adiabatic index; Oa, semivertex angle of nozzle; 0, angle of rotation flow; s dis- 
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tance between nozzle axes; ~(M), q(M), ~(M), gas -dynamic functions; 6, pressure drop at 
shock wave; o, angle of slope of shock wave. 
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QUESTION OF THE MOTION OF A SYSTEM OF SEQUENTIAL 

COAXIAL VORTEX RINGS IN A HOMOGENEOUS FLUID 

O. G. Martynenko, I. A. Vatutin, 
N. I. Lemesh, and P. P. Khramtsov 

UDC 532.516 

Results are presented of an experimental investigation of the singularities of 
the motion of a system of interacting toroidal vortices in a homogeneous fluid. 

In connection with the possibility of a practical application of ring vortices to re- 
move smoke, harmful gases, etc. in industrial plants, numerous theoretical and experimental 
investigations have recently been performed concerning the mechanism of ring vortex forma- 
tion and the regularities of their propagation in gases and liquids [i-4]. Significantly 
less attention has been paid to questions of propagation of a system of coaxial vortex rings 
following one another. Meanwhile a number of specific properties of the motion is of in- 
terest in these cases. 

It is known [5] that there is a complete analogy between the equations of vortical fluid 
motion and the fundamental equations of the theory of electromagnetism. Moreover, a rela- 
tionship is obtained that describes toroidal vortex interaction that is analogous to the 
Biot-Savart law about the action of an electrical current on a magnetic pole. This would 
permit a general representation to be obtained ah~the dynamics of the motion of two co- 
axial vortex rings with identical direction of rotation. 

Their mutual influence is that the radius of the vortex going forward increases while 
that of the following vortex diminishes. While the radius of the first vortex is made grea- 
ter than the radius of the second, its motion is retarded and that of its follower is acce- 
lerated. 

An experimental verification of the "leapfrogging" of two vortex rings was obtained in 
[6, 7]. We take the following notation 2,1 + 1,2 + 2,1 for convenience in describing the 
"leapfrogging" to twovortex rings. 

Denoting by i, 2, 3 the first, the next, and the last vortices, respectively, from the 
exit of a vortex generator and taking account of what was said above, we can give a basis 
for the following possible variants of the "leapfrogging"of three coaxial vortex rings: i) 
3,2,1 ~ 3,1,2 + 1,3,2 + 1,2,3 + 2,1,3 + 2,3,1 ~ 3,2,1; 2) 3,2,1 § 1,2,3 ~ 3,2,1; 3) 3,2,1 + 
1,2,3 + 2,1,3 + 2,3,1 § 3,2,1; 4) 3,2,1 + 1,2,3 ~ 1,3,2 + 3,1,2 + 3,2,1. It is assumed here 
that the vortex ring of large radius does not overtake the ring of smaller radius and that 
two kinds of interaction, doubling (merger of two vortices) and tripling (merger of three 
vortices) can occur. 

If the number of vortex rings is N > 3 then the quantity of possible interactions natu- 
rally grows. For favorable relationships between the sizes, intensity, and repetition rate 
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